Graficacion Unidad 3

UNIDAD 3

 GRAFICACION EN 3D

3.1.- Representación De Objetos En Tres Dimensiones.

En computación, un modelo en 3D es: “Un mundo conceptual en tres dimensiones”.
Un modelo 3D se ve de dos formas distintas:
Desde un punto de vista técnico, es un grupo de fórmulas matemáticas que describen un “mundo” en tres dimensiones.
Desde un punto de vista visual, valga la redundancia, un modelo en 3D es una representación esquemática visible a través de un conjunto de objetos, elementos y propiedades que, una vez procesados (renderización), se convertirán en una imagen en 3D o una animación 3d.
La representación de los objetos en tres dimensiones sobre una superficie plana, de manera que ofrezcan una sensación de volumen se llama Perspectiva. Se representan los objetos sobre tres ejes XYZ. En el eje Z, se representa la altura. En el eje Y, se representa la anchura y en el eje X, se representa la longitud. Los distintos tipos de perspectivas dependen de la inclinación de los planos Los sistema más utilizados son la isométrica, la caballera y la cónica.



La Perspectiva 

La perspectiva es el arte de dibujar volúmenes (objetos tridimensionales) en un plano (superficie bidimensional) para recrear la profundidad y la posición relativa de los objetos. En un dibujo, la perspectiva simula la profundidad y los efectos de reducción dimensional y distorsión angular, tal como los apreciamos a simple vista. Es en el renacimiento cuando se gesta la perspectiva como disciplina matemática, para conseguir mayor realismo en la pintura.
Perspectiva Caballera.- En ella los ejes X y Z tienen un ángulo de 90º y el eje Y con respecto a Z tiene una inclinación de 135º. En este caso las medidas en los ejes X y Z son las reales y las del eje Y tiene un coeficiente de reducción de 0.5. 



Renderizado

El renderizado es un proceso de cálculo complejo desarrollado por un ordenador destinado a generar una imagen 2D a partir de una escena 3D. Así podría decirse que en el proceso de renderización, la computadora “interpreta” la escena 3D y la plasma en una imagen 2D.
La renderización se aplica a los gráficos por ordenador, más comúnmente a la infografía. En infografía este proceso se desarrolla con el fin de imitar un espacio 3D formado por estructuras poligonales, comportamiento de luces, texturas, materiales, animación, simulando ambientes y estructuras físicas verosímiles, etc. Una de las partes más importantes de los programas dedicados a la infografía son los motores de render los cuales son capaces de realizar técnicas complejas como radiosidad, raytrace (trazador de rayos), canal alpha, reflexión, refracción, iluminación global, etc.
Cuando se trabaja en un programa de diseño 3D por computadora, no es posible visualizar en tiempo real el acabado final deseado de una escena 3D compleja ya que esto requiere una potencia de cálculo demasiado elevada. Por lo que se opta por crear el entorno 3D con una forma de visualización más simple y técnica y luego generar el lento proceso de renderización para conseguir los resultados finales deseados.



3.2 Visualizacion de objetos

    En este caso trataremos con las proyecciones que van del espacio al plano (3D a 2D). La proyección de objetos tridimensionales serán definidos por la intersección de líneas rectas que van desde un centro de proyección u ojo, hasta cada punto del objeto.

Proyección Acotada

      Es una proyección ortogonal sobre la que se acotan en cada punto, línea, u objeto representado la altura (cota) del mismo con respecto a cualquier plano de referencia que sea paralelo al plano de proyección. La proyección acotada es muy práctica cuando es necesario representar gráficamente objetos irregulares; razón por la cual se usa frecuentemente para el diseño de techos de viviendas; construcción de puentes, represas, acueductos, gasoductos, carreteras, determinación de áreas de parcelas, trazado de linderos, y dibujos topográficos de plantas y perfiles de terrenos, entre otros.


Proyección Cónica.

     Denominada también perspectiva. Se obtiene cuando el punto de observación y el objeto se encuentran relativamente cercanos. Es el sistema de representación gráfico en donde el haz de rayos proyectantes confluye en un punto (el ojo del observador), proyectándose la imagen en un plano auxiliar situado entre el objeto a representar y el punto de vista.



PROYECCIÓN ORTOGONAL

      La Proyección ortogonal es aquella cuyas rectas proyectantes auxiliares son perpendiculares al plano de proyección (o a la recta de proyección), estableciéndose una relación entre todos los puntos del elemento proyectante con los proyectados.
Existen diferentes tipos:
Vista A: Vista frontal o alzado
Vista B: Vista superior o planta
Vista C: Vista derecha o lateral derecha
Vista D: Vista izquierda o lateral izquierda
Vista E: Vista inferior
Vista F: Vista posterior



PROYECCIÓN OBLICUA.

      Es aquella cuyas rectas proyectantes auxiliares son oblicuas al plano de proyección, estableciéndose una relación entre todos los puntos del elemento proyectante con los proyectados.
Una proyección Oblicua se obtiene proyectando puntos a lo largo de líneas paralelas que no son perpendiculares al plano de proyección. 


3.3 Transformaciones Tridimensionales.

      Las transformaciones de los objetos, son la Posición, la Rotación y la Escala.
Determinan la ubicación en el la escena mediante coordenadas trigonométricas en los ejes de coordenadas  x, y y z. Se refieren a todo el objeto.  La manera más fácil de conseguir las transformaciones básicas (traslación, rotación, escalación, en general las transformaciones afines) es utilizando matrices de transformación.
Coordenadas homogéneas
Nos será útil sustituir las coordenadas (x, y) por las coordenadas (xh, yh, h), llamadas coordenadas homogéneas, donde:
x = xh/h,    y = yh/h
(xh, yh, h) = (h . x, h . y, h)
Expresar posiciones en coordenadas homogéneas nos permite representar todas las ecuaciones de transformación geométrica como multiplicaciones de matriz. Se representan las coordenadas con vectores de columna de 3 elementos y las operaciones de transformación se expresan como matrices de 3 por 3.
Matrices de transformación en 3D más comunes
Traslación
En la representación homogénea tridimensional de las coordenadas, se traslada un punto de la posición P = (x, y, z) a la posición P’ = (x’, y’, z’) con la operación de matriz
P’ = T x P
donde P y P’ son vectores columna como matrices, la matriz
T=1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1
y tx, ty y tz especifican las distancias de traslación en x, y y z
x’ = x + tx
y’ = y + ty
z’ = z + tz

Método De Traslación.

En una representación coordenada homogénea tridimensional, un punto es trasladado de la posición (x,y,z) a la posición (x’,y’,z’) con la Operación matricial.
[x´, y´,z´,1]=[x, y, z, 1]
Los parámetros Tx, Ty, Tz, que especifican distancias de traslación para las coordenadas, reciben la asignación de cualquier valor real. La representación matricial de la ecuación 11.1 es equivalente a las tres ecuaciones:
x’ =x + Tx, y’ = y + Ty, z’ =z + Tz
Un objetivo se traslada en tres dimensiones transformando cada punto definidor del objeto. La traslación de un objeto representada como un conjunto de superficies poligonales se efectúa trasladando los valores coordenados para cada vértice de cada superficie. El conjunto de posiciones coordenadas trasladadas de los vértices define entonces la nueva posición del objeto.









3.4 Líneas y superficies curvas

  Las ecuaciones de los objetos con límites curvos se pueden expresar en forma paramétrica o en forma no paramétrica. El Apéndice A proporciona un resumen y una comparación de las representaciones paramétricas y no paramétricas. Entre los múltiples objetos son útiles a menudo en las aplicaciones gráficas se pueden incluir las superficies cuadráticas, las supercuádricas, las funciones polinómicas y exponenciales, y las superficies mediante splines. Estas descripciones de objetos de entrada se teselan habitualmente para producir aproximaciones de las superficies con mallas de polígonos.
La necesidad de representar curvas y superficies proviene de modelar objetos “from scratch” o representar objetos reales. En este último caso, normalmente no existe un modelo matemático previo del objeto, y el objeto se aproxima con “pedazos” de planos, esferas y otras formas simples de modelar, requiriéndose que los puntos del modelo sean cercanos a los correspondientes puntos del objeto real.
La representación no paramétrica de una curva (por ejemplo, en dos dimensiones) puede ser implícita, y = f(x) O bien explícita, f(x, y) = 0
La forma implícita no puede ser representada con curvas multivaluadas sobre x (por ejemplo, un círculo), mientras que la forma explícita puede requerir utilizar criterios adicionales para especificar la curva cuando la ecuación tiene más soluciones de las deseadas.

Representación paramétrica.

Una representación paramétrica (por ejemplo, de una curva bidimensional) tiene la forma P(t) = ( x(t), y(t) )T t1 <= t <= t2
La derivada o vector tangente es
P’ (t) = ( x’(t), y’(t) )T

El parámetro t puede reemplazarse mediante operaciones de cambio de variable, y frecuente se normaliza de modo que t1 = 0 y t2 = 1. Aunque geométricamente la curva aparece equivalente, una operación de este tipo normalmente modifica el comportamiento de la curva (esto es visible al comparar sus derivadas).

Comentarios

Entradas más populares de este blog

Unidad 2 Lenguajes y Automatas 1 - Expresiones Regulares.

Unidad 3 Lenguajes y Automatas 1